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A FORBIDDEN SET FOR EMBEDDED EIGENVALUES 

RAFAEL RENE DEL RIO CASTILLO 

(Communicated by Andrew Bruckner) 

ABSTRACT. We study the problem of embedding eigenvalues to the spectrum 
of a Sturm-Liouville operator in the half axis when this spectrum is a perfect 
set. We prove the existence of an uncountable dense subset of the spectrum 
for which, by modifying the condition at the left or by locally perturbing the 
potential, it is not possible to add any eigenvalues. 

1. INTRODUCTION 

In this paper we consider Sturm-Liouville operators generated by the differ- 
ential expression lu = -u" + q(x)u in the half line [0, ox). 

It is known that, through local perturbations of the potential or by considering 
arbitrary conditions at the left, it is possible to add eigenvalues anywhere in 
the resolvent set (see [4, Theorem 2.5.3]) or to produce an infinite number of 
embedded eigenvalues (see [2, Remark 5]). 

Nevertheless, we prove in this paper that there exists a specific subset of the 
spectrum for which, assuming the spectrum of the unperturbed operator is a 
perfect set, it is not possible to generate embedded eigenvalues by means of the 
above perturbations. We also show that this "forbidden" set, which depends 
only on the behaviour of the potential at infinity, is a dense and uncountable 
set. Moreover, every point of the spectrum is a condensation point of this set. 

This paper is organized as follows. In ?2 we define the unperturbed opera- 
tor L and the perturbed operator L. We prove that eigenvalues can appear 
only in points where the symmetric derivative of the spectral function of the 
unperturbed operator is zero. This is proved by using a theorem of Aronszajn 
[1]. In ?3, using tools of elementary real analysis, we show that the set of points 
where a given series diverges is "big" in some sense. This result is crucial for 
proving our main theorem in the presence of only pure point spectrum. Section 
4 is devoted to the proof of the main result where a theorem of Kundu [5] is 
applied. 
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2. PRELIMINARIES 

Consider the selfadjoint operator L generated by the differential expression 

lu =-u" + q(x)u, O < x < oo, 

where q is a real-valued, locally integrable function, as Lu = lu with domain 

D(L) = {u E L2(0, oo)Iu, u' are locally absolutely continuous, lu E L2(0, ox), 

and u(O) cos a + u'(O) sin a = O}, a E [O, 7r). 

The limit point case occurs at 00, and 0 is a regular point. We shall denote 
the spectral function of L by p. Sometimes to emphasize the dependence on 
a we shall write La and pa. 

The perturbed operator L will be any selfadjoint realization of the differen- 
tial expression 

lu= -u" +{q(x)+v(x)}u, a <x < oo, 
where -00 < a and v(x) is a locally integrable function with compact support. 
If the limit circle case (l.c.c.) occurs at a, then a boundary condition will be 
needed. 

The operator L is defined as Lu = lu with domain 

D(L) = {u E L2(a, oo)lu, u' are locally absolutely continuous, 

lu E L2(a, 00), and [v, u]a = 0 if we have l.c.c. at a}. 

Here v is a nontrivial solution of (I - A)u = 0 (A E R) and 

[v, U]a = lim(v(x)u'(x) - V (x)u(x)). 

See, for example, Theorem 5.8 of [6]. 
The following observation will be useful in the sequel. 

Remark 1. If A is eigenvalue of L then, for some a E [0, 7), A is an eigen- 
value of La 

Let us define 
Dp(A) = 1im 2 

Lemma 1. f? dp(A)/ (o - A))2 < 00 =A Dp(O) = 0. 

Proof. Assume that ffo dp(A)/l(o - A)2 < 00, and, for all ie > 0, define the 
interval I = [AO - e, AO + ef]. We shall denote the length of I by III. Then 
we have 

0____A dp()A) 1 fI p (I) 

(Ao )2 1 (AO2 lie dpA2 u)= 1161 dI 
and, therefore, 

imi dp(i) p()o + 8) - p(0o - 8) 

lio o0(,Zo -)2> 28 

since ioIl, (l ) 

and the right-hand side of the above inequality is nonnegative, it follows that 
Dp(Ao) exists and equals zero. Q.E.D. 
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Lemma 2. If AO is an eigenvalue of L then Dp(Ao) = 0 or AO is an eigenvalue 
of L. 

Proof. Assume that ZO is an eigenvalue of L and Dp(Ao) > 0. Then from 
Lemma 1 it follows that f??. dp(A)/I(o - A)2 is not finite. Using Theorem 4 
of [1] we can conclude that AO is not an eigenvalue of L,6 for ,B # a. If AO 
is not an eigenvalue of La then, from Remark 1, it follows that AO is not an 
eigenvalue of L. Q.E.D. 

3. A REAL VARIABLE RESULT 

Let N denote the set of positive integers, R+ the positive real numbers, and 
I the closure of I. The difference of two sets A, B will be denoted by A - B. 
Recall that a set is said to be dense in itself if it is contained in the set of its 
limit points and that a point p in a metric space X is said to be a condensation 
point of a set A c X if every neighborhood of p contains uncountable many 
points of A. 

Let F: S 1tR+ be an arbitrary function, where S c [a, b] is countable and 
dense in itself. Define 

A= [a, b]-S sF(s) = A 

{ sE S Is- }I2 

Lemma 3. The set A defined above is uncountable, and every point of S is a 
condensation point of A. 
Proof. Let us consider the family of functions 7 := {313: N -- {O, 1}}. 
Choose 3 E 7, and, for each k E N, denote by 3k the restriction of 3 
to the finite set {1, ... , k} . We shall define for each 3k an interval I& . 

In what follows ISF will denote the open interval (s - F1/2(s), s + F1/2(s)), 
and the index i will take the values 0, 1 . 

Let I c [a, b] be an arbitrary open interval such that S n I # 0, and choose 
So E S n I. Define Iso := I n ISOF . Select and fix two different points ai such 
that ai 7 so and ai E Iso n S. We can do this because S is dense in itself. 

Let Ia, be two open intervals which satisfy ai E 'aj, iai C Iso, nl o Iai = 0- 
Define I16 := Ia(l) n Ia8(l)F - This completes the construction for the case k = 1. 
Now define s, = a3(l). 

Let us assume that we have defined an interval Ijk-, and a point Sk-I E 

I_ n S. Choose two points ai such that ai E I,k_, n S and ai s 5k-1, and 
fix two open intervals Ia, satisfying ai E Iai 'a1 C ci&-,fl no I = 0. Define 

5k '= Ia8(k) n Ia8(k)F and Sk = ad(k)- 
We can now define I& for each k E N. This definition can be done in many 

ways, but once we have chosen the points ai and the intervals Ia, , the definition 
is unique. In order to define I5k, for any other function 3', we choose exactly 
the same points ai and the same intervals Ia, we have chosen to construct I&. 

Now, for each 3 E 7, define B1(3) = nk,l% I7k where Ik denotes the 
closure of the interval I.k . Since Ijk Ik for every k E N, it follows that 
B(?;) # o. 

Now define B, = U6- B,(3) and B = U B, where the second union is 
taken over all open intervals contained in [a, b] such that I n S # 0 . 
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We shall prove the following: 

(a) B-ScA. 
(b) B - S is uncountable and every point of S is a condensation point of 

B-S . 
Choose 4 E B - S. Then 4 E B1(3) = nl,7 I& for some 3 and I. Hence, 

there is a sequence Sk E 'k jn S such that, for all k E N, sk - <ki ? F1/2(sk). 
Therefore, 

1 ?<F(sk) and F(s) F(sk) 

implying that 4 E A. This shows that (a) holds. 
To prove (b), choose an open interval I c [a, b] and construct B, as before, 

i.e., 
B,= U B1(3). 

Since B1(3) 0 0, select xj E B1(3) and define the function 

J : 7 - B, 
5 --4Xj eB1 (). 

We shall see that J is injective. If 3, 3' E 7 and 3 # 3', then there is 
k E N such that 3(k) : d'(k). From the construction above it follows that 
Iad(k) n Ia81(k) = 0 and therefore Ik n Ijk, = 0. Hence, B1(3) n BI(3') = 0 and 
so x5 #& 

Since the set 7 is uncountable, so are B, and B - S. Since B, c I, it 
follows that each point of S is a condensation point of A. Thus (b) holds, and 
the proof of the lemma is complete. Q.E.D. 

4. THE MAIN RESULT 

In [5] Kundu proved that if: 
(i) lim infx ,.o f(x) > f(E) > lim infx,S+o f(x) for all E E [a, b], 

(ii) Df(x) < 0 almost everywhere in (a, b), 
(iii) Df (x) < 0 except of a countable set in (a, b), 

then f is decreasing in [a, b]. 
Here we used the notation 

Df (x) = lim sup f(x + h) - f(x - h) 
h--+O 2h 

_f(x) = lim inf f(x + h) - f(x - h) 
h--+O 2h 

The function f is said to be decreasing if x < y = f(x) > f(y) . Analogously, 
f is increasing if x < y =a f(x) < f(y). 

We shall use this result to prove the following theorem. The spectrum of L 
will be denoted by a(L) . 

Theorem. Iffor an interval J the set C = J n a(L) is a perfect set, then there 
exists an uncountable set B c C such that every point of C is a condensation 
point of B and, moreover, L cannot have eigenvalues in B. 
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Proof. The spectral function of L can be written as p = Pc + Pd where Pc 
is an increasing continuous function and Pd iS an increasing saltus function. 
Consider an arbitrary open interval such that I n C 0o. 

If Pc is not constant in I then Pc is not decreasing and, applying the the- 
orem of Kundu mentioned above, it follows that there is an uncountable set 
B c I such that, if x E B, then it is not possible to have Dpc(x) = 0. Since 
Dp(x) = 0 implies Dpc(x) = 0, it follows that the relation Dp(x) = 0 is not 
possible. In view of Lemma 2, the two last conclusions of the theorem follow 
in this case. It remains to show that B c C, but this is a simple consequence 
of the fact that for x in the resolvent set of L we have Dp(x) = 0. 

Now assume that Pc is constant in I. In this case the spectrum is pure point 
in I and, for any 4 E I, we have 

0?? d p(A) > dp(A) _ dPd 
A)2 J A)2 A)2 

Since Pd is a saltus function, the measure generated by this function is sup- 
ported on a countable set S c I. 

Let us denote the measure of a point s E S by F(s) . Then we have 

j Pd (i) F(s) 
JI _ )2 SEs (4 - S)2' SES 

Since In C = S and C is perfect, S is dense in itself and we can apply Lemma 
3, showing that for every 4 in an uncountable set A c I it happens that 

0?? d p (,) 
Jo(4 Z) 2 = X0. 

An application of Theorem 4 of [1] and Remark 1 imply now the two last 
conclusions of theorem. From 

Z F(s)=j dp(s) < oo and Z(s) =)2 =X 
SES SES 

( 
) 

for E E A, it follows that infSES I1 - SI = 0 and therefore A c C. This can 
also be proven using Theorem 2.5.3 of [4]. Therefore, the remaining assertion 
is proven. Q.E.D. 

Remark 2. The theorem holds for every perturbation L which has the property 
mentioned in Remark 1. 

Remark 3. Using Theorem 1 of Donoghue [3] instead of Theorem 4 of Aron- 
szajn [1], a similar result can be obtained for perturbations Ha = Ho + aP 
of a selfadjoint operator Ho, where P is a selfadjoint projection on a fixed 
normalized element and a e R. 

Remark 4. If A E B then lu = Au has no solution which lies in L2 near 0 . 
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